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Equilibrium of an elastic half-plane with a rectilinear crack reaching the half- 
plane free boundary at an arbitrary angle is considered as a plane problem of the 
theory of elasticity. It is assumed that known compressive stresses are applied at 
considerable distance from the crack forcing the opposite boundaries of the crack 
to contact each other. Interaction between the crack boundaries are defined by 
the law of dry friction with cohesion. Mathematically this problem is analogous 
to that of a tectonic crack filled with a low-strength medium. First, the problem 
is stated and fundamental relationships are presented. The Wiener-Hopf equation 
of the considered problem is derived with the use of MeUin transform and Jones 
method. The exact analytical solution of the Wiener-Hopf equations is then 
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obtained and the stress intensity coefficient at the tip of the crack is determined. 
The obtained solution is used for investigating the geophysical problem of stabi- 
lity of a slope with a tectonic crack. 

1.  S t a t e m e n t  o f  t h e  p r o b l e m  a n d  f u n d a m e n t a l  r e l a t t o a e h t p e .  
Let us consider the deformation of a homogeneous isotropic elastic half-space under con. 
ditions of plane strain. In the Oxy-plane of rectangular Cartesian coordinates xy  the 
half-space occupies the half-plane x ~ 0. A rectilinear crack of length l reaches at 
angle a to the x-axis  the half-plane boundary which is free of external load (Fig. 1) • 

Below we shall use polar coordinates r0 with their center at the 

i I origin of Cartesian coordinates. 
fl0 We assume that compre~ive stresses acting at infinity force 

the opposite sides of the crack together, and that the interaction 
between these is defined by the law of Coulomb dry friction with 
adhesion. It is also possible to comider this problem as one of a 
tectonic crack with a low strength filter, a problem that is mathe- 
matically analogous to the comldered one (more about this in 
Sect. 5 below). 

,T The fundamental relationships (the equation of equilibrium, 
the condition of strain compatibility, and Hooke's law) are 

O~ r OTto T IPO r-'~-r "~--~--~-~r--<5o~O (i.i) 

0% aT,o 
00 + r - ~ - - + 2 ~ 0 =  0 

Fig. i 

/ ~ ( 6 r j r .  Oo)= 0 ( / ~ =  lr OrO ( r - - ~ ) ' - ~ " ~ - O ' ~ )  (1.2) 

Our t + v 
o~ - E [ ( l - v )  z~--v~o] (1.a) 

ur -t- t 0% l + v 
7 r 0-'6- = ~ [(t - -  v) ~o - -  vz,) 

I 0% 0% u o t + v 
r 00- 2f- Or r = 2 ----K- ~o 

The length of the crack can be taken, without loss of generality, as the characteristic 
unit of length. 

We formulate the boundary conditiom of the lxoblem as follows: 

for 0 -~- --}- ~ /  2 O" = Tr0 = 0 (1.4) 

for 0 = ~  [ ~ 0 ] = [ ~ , 0 ] = 0 ,  [u0] = 0  O. 5) 

for 0 - -  ¢z, 0 < r  < i  ~r0 = k - -  o 0 t g p  + ] ( r )  (G0 < 0 )  (1.6) 

for 0 = a ,  t < r  ~ c o  [Or] = 0 (1 .7)  

where k is the adhesion coefficient, p i~ the angle of dry friction between the crack 
sides, f (r) is a specified function, and brackets denote a jump of the encloeed quantity 
(e.  g . ,  [o0J = if0 [0=~+o - -  % 10---~-0)" For 0 < r < t conditions (1.  5) mean in the 
physical sense that there are no external loads on the crack and that its sid¢~ are in close 
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contact all along its length. Function ] (r) is determined from the external problem 
with the use of the superposition principle so as to have the condition 

for r ---~oo, o'0 - + 0 ,  Xre - + 0 ,  ~r - + 0  (1.8) 

satisfied at infinity. For example, if a constant compressive stress o~ ---- - -  Po is present 
at infinity and all remaining stresses are zero (Fig. 1), function [ (r) is equal to the fol- 
lowing constant quantity: 

t sin p + sin (p + 2~) (1. 9) 
l (r) : - -  -~- p0 COS p 

It iS equal (Xr0 + % tg p) taken with the minus sign, which corresponds to a solid body 
without a crack along the line 0 = a. Stresses and strains in the problem represented in 
Fig. 1 are, evidently, equal to the stresses and strains obtained in the solution of the bonn- 
dary value problem ( L  1 ) -  ( L  8) plus the related stresses and strains in the same solid 
body without a crack subjected to compressive stress au = - -  P0. The definition of func- 
tion I (r) in the case of a heavy slope at an arbitrary angle subjected to variable exter- 
nal load is given in Sect. 5. The problem of equilibrium of a brittle body with cracks 
superposed along one and the same straight line was previously considered in a similar 
physical formulation [1]. 

2 .  T h e  W l e n e t - H o p f  e q u a t i o n .  Letus apply the MeUin transform [2] 

/* (p) = S / (r) rV dr (p is a complex parameter) (2.1) 
0 

to the equilibrium equations (1. 1). We obtain 

* t d%* t dz% ( 2 . 2 )  
Vr0 ~ P - - t  dO ' P~r* ~ p_----T dO --- f  60* 

Physical considerations indicate that stresses in this problem are limited for r - +  0 
and for r - +  co they conform to O (r-2). Hence their MeRin transforms are analytic 
functiom of the complex variable p in the strip - -  t < Re  p < 1. Substituting a ,*  
into the transformed equation (1. 2), we obtain 

dO' + [(p + t ) '  + (p - -  t ) '  l - ~ -  + (p + t ) '  (p - -  1) '  z0 = 0 (2.3) 

We represent the solution of this equation thus: 

{'+ ~;~-" %,._ - - : t l2~<O<a (2.4) 

% , a < 0 ~ < n / 2  

+ (2.5) 

+ + 
where Az :1:, A~ ±, Aa ± and A,± are unknown functions of parameter p that are to 
be determined from boundary conditions. Any seven of these can be expressed in terms 
of a single unknown function by using seven "through" boundary conditions (1. 4) and 
(1. 5) transformed with respect to r. By (1. 3) we have 

cg~uo t + v  / 0%0 %0 t - - ,~  Oar v Oao\  
Or~ = ' - " N - -  \2--~'r  + 2 - - - -  r r OO -{- r 0O ) 
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and, consequently, Ouo* t + v  [ .  • d%* d%*] 
(p + i) ~ ----- - - - i f -  [zp~,o + (t - -  v) - ~ -  - -  v -~ - ]  (2.6) 

From the tranafon'ned boundary conditions (1.4) and (1. 5) with the use of (2.2) and (2.6) 
we obtain 

A a - + A c = 0 ,  Aa + + A 4  + = 0  (2.7)  

A,+(p-}- i )cos (p-[- l ) ( a  -}-, 2 )  + A~ + (p - -  i ) c o s ( p - -  t) × 

A, + ( p -  i) ~,, ( p -  i) (~ + ~ )  = A~-(p + l) ¢o~(p + i) × 

(~- -~) + ~-(~-,)oo~-~)(~--~-)_ 
Aa-(p -~- t) sin (p -k t ) ( a - -  ~ - )  --  A,-(p-- t) sin (p - -  t) X 

(~--~-)- ~(~ + ~)~oos(~ + ~)(~+ {- ) -  
A~ + ( p - -  t)a cos (p - -  t ) ( a  + 2 )  + An+ (p -t- 1)3 sin(p + 1) X 

Az- (P  + t) -Jr A c  (p - -  I ) =  O, A1 + (p -{- t) -}- As + ( p - - i ) = O  

~-~n(~ + ~)(~-- {-) + ~-si~(~-- ~)(~-- ~ )  + 

We write the solution of this system of equations in the form 

p + t A~ (p) D (p) (2.8) A ~ = A ~ ( p )  D(p), A ~ =  p - - t  

Aa ~ ---- A + (p) D (p), .4~ ---- --  A + (p) D (p) 

wlmm (D (p) is an unknown function of p and 

[Cl- al~ c1~ I al+ al- c1 ~ 
A l l = - - ~ -  c~- as~ c~ + , A~ = az + a2- cg=~ (2 .9)  

Ca- aa:F ca + as + aa- Csq:l 

at ± = (PT- t ) s in  (p ~ i) ( a  -+- 2 )  - - ( p  ~ l ) s i n (p -~  t ) ( a  --{- -~-) 
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a+=--2++ ,)oo++++o~ (+-_~+) 
aa + -~ (iv -~- 4_) [ ( p ~ -  I - 4_)s cos  ( p ~ -  4_) (a  -Jr- --~-) - -  

,)+oo++_+,> (+_+ +)I 
+,+ = +- s+. + 

c+ + =  (P-I- i)s sin (P-t - 4-)(4 + 2 ) - - ( P - -  4-)s sin (P- -  4-) (a--I- 2 )  

The boundary conditions at displacements ([u0] = 0 for 0 ---- cc and [url = 0 for 
0 = g r > t)  may be taken as automaticaUy satisfied owing to tb.¢ single-commcted- 
aess of the considered region, since the conditions [0uo / #r] = 0 and [OUr / Or] = 0 
are satisfied for 0 ---- cc and 0 = ccr > i ,  respectively. In any case the addition of a 
constant dislocation jump along the line 0 = g does not affect the strain and stress 
fields. 

Omitting cumbersome computations, we present the remits of calculations by formulas 
C2. 9) 

A,± e)  -- ! t0p(p~-  4-) ~os~+i. .psinp ( 4 ~ - ~ )  (2.10) 

We introduce the following functions: 

cb-(p)=S[o,llo=.rvdr , ~+(p)= (~ ,o+ootgp) lo__~rPdr  (2.11) 
0 1 

Functions (I)- (p) and ~r+ (iv) are obviously analytic in the half-plane.s Re  p ~ - - t  
and Re p < 4- , respuctively. 

Boundary conditions (1.7) and (1.6) imply that 

for 0 = ~ [~,1 = (I)-(p) (2. z2) 

for 0 = a ~*,0 q- +*o tg  p = V + (p) q- F (p) (2. 13) 
1 

F (p) = t' [k -4- / (r)l rV dr (2. 14) 
0 

Using formulas (2.2), (2.4),(2.  5) and (2.8) with conditions (2. 12) and (9. 13), we obtain 

p (p - -  4-) ~ -  (p) -= C, (p)D (p) (2. 15) 

(p - 4-) {~+ (p) + F (p)} = D (p) {2C, (p) + C, (p) tg p) (2. x6) 

where 
c~ 0,)= ~,+ 0,)¢P + i)' +in O+ + 4-) (4 + ~) - (2. ~7) 
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( ~ - ~ )  + ~ c ( p ) ( f -  t) × A1- (p) (p  *~- i )2sin (p + i) 

( a - -  2 )  - -  A,- (p) (p + t)~ cos (p + l)  × s in  ~o ~ 1) 

c~ (p) = - ~,÷ (p) (p + ,) oos = sin p (= + 2 )  - -  

A~ + ( p ) p c o s a e o s  p ( a  + + )  + A, ÷ (p) s i n s  sin p ( a - { - + )  

c. (p) = ~,* (p) (p - ,) s~. (p + ~) (~ + 2 )  

A~+ (p) (p + 1) s~n (p - t) (a  + ~ - )  - 2A,÷ (p) X 

( p - -  l ) c o s a s i n  p ( a  + -{-)  

Omitting intermediate computations, we present the results of transformation by for- 
mulas (2. 17) and f2.10) (2.18) 

C1 (p) = 6 @  2 (p + 1) sin 2 ~p 

C2 (p) = 8p (p -4- I) sin a p  (2p 2 cos 2 a cos 2pa - -  
p sin 2a  sin 2pa  ÷ cos up  - -  cos 2pa) 

C3 (p) = 32p 2 (p2 _ t)  cos 2 a sin up  sin 2pa  

Eliminating function D (p) from formulas (2.15) and (2.16) we obtain the following 
functional Wiener-Hopf equation: 

V + (P) -4- F (p) = a/, ctg ~tp G (p) O -  (p) (2. 19) 

G(p) = l-l- cos 2PU~2p2 cos2a_  1 -{-p tg 2/x~[2(p--t)  tgp cos ~ a - - s i n  2d]} (2.20) 
cos ~p  - 

S. S o l u t i o n  o f  th8  b o u n d a r y  v a l u e  p t o b l 6 m .  It can be readily shown 
that function G (p) in the functional equation (2.19) has the following properties: 

~÷ 

® 
L 

0 l 9 -  

Fig. 2 

a) it is meromotphic and all poles which lie at points p 
! l / 2 ~ n ,  where n = 1, 2, 3, . . . are simple; 

b) for p =~ 0 it has no poles or zeros anywhere along the ima- 
ginary axis, with the exception of point p = O, where it has the 
second order zero 

(p) = p~ [2a  ~ - -  
f l l  2 

G -~- + 2 c o s * a - -  (3.1) 

4a cos a (tg p cos a + sin a ) ] +  O (p3) (p --. o) 

c) for p --~ oo it tends to unity along the imaginary axis in 
virtue of the inequality ~z < ~ / 2. 

Let us consider contour L in plane p consisting of the imagin- 
ary axis (with the exception of a small segment symmetric about 
the coordinate origin) and of the right-hand small radius semicircle 
with its center at the coordinate origin (Fig. 2). The direction of 
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pa~ng the contonz L coincides with that of the imaginary axis. P, egiom lying to the 
left and right of contour L are denoted by D+ and D_ re,spectively. Along the contour 
L function G (p) has obviously nowhere either poles or zeros, and can be represented 
in the form 

a (p) -= G + (/9) / G- (p) (p ~ L) (3.2) 

where G + (/9) and G- (/9) arc analytic functions that have no zeros in regiom D÷ and 
D_ , respectively. 

Functions G + (p) and G- (p) can be defined as follows: 

t I l nG( t )d t  (G+(p) ,  p ~ D +  
exp 2-~ t ---- p ----" G- (p), p ~ D_ (3.3) 

L 

Owing to the properties of Canchy type integrals, functions G + (p) and G- (p) satisfy 
all specified conditions (condition (3.2)is readily verified by p ~ i n g  in formulas (3.3) 
to limit values of functions along contour L with the use of Sokhotaki's formula}. Since 
for [ t [ --)- co function In G (t) exponentially decreases along L , integral (3.3) rapid- 
ly converges. 

We shall use also the following known formula (see, e. g.,  [3]) I 

p etg gp = K + (p )K-  (/9) (3.4) 
where 

K± (p) = r (t ~ p) / r ('/2 ~ p) o .  5) 

In conformity with the properties of gamma functions, functions K + (p) and K -  (p) 
are analytic and have no zero6 for Re p < 1/2  and Re p ~ - -  1 /2  , respectively. 
Furthermore, according to the Stifling formula we have 

for p --~ co K + (p) = ]/'-----p -+- O (1) (Re p < z/,) (3.6) 

K -  (p) = V 7  + o (t) (he p > -'/2) 

By factorizing (3.2) and (3.4) the functional equation (2.19) can be written as 

~"+ (P) -k ~ (p) (D- (p) g -  (p) 
K+ (p)G+ (p) K + (p) G+ (p) - -  4pG- (p) (P ~ L) (3.7) 

Let us now use the following formula: 

F(p) = F  + ( p ) - F - ( p )  ( p E L )  (3.8) K+ (V) G+ (p) 
where 

i I 1: (t) dt { E+ (P), P e D+ (3.9) 
K+ (t) G+ (t) (t - -  p) = F-  (p), P E D_ 

L 
Substituting (3.8) into (3.7) we obtain 

a)- (p) K- (p) v~.+ (p) "at- F+ (P) "~'" ~ppG: ~-) -~- F (p) (p E L) (3.10) 
K + (p) C+ (p) 

The function in the left-hand part of this equality is analytic throughout region D+, 
while that in its right-hand part is analytic throughout region D_. By the principle of 
analytic continuation they are equal to one and the same function that is analytic 
throughout the region. To determine that function, it is neceuary to consider the beha- 
vior of the unknown functions ~)- (p) and ~ + (p) at infinity for p --~ co. For this we 
use formulas (2. 10) and the asymptotic propertie~ of the elastic field close to the tip Of 
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the crack with contacting sides [1]. Under the conditions of the considered problem and 
for O ~ct and r ~I we have 

KII 

V'2~ro 
- -  sin --~- (2 + cos -~- cos - ~ )  + 0 (t) (3. zz) 

KIt 

KII ( t • ,.o = ~ c o s  --~- - -  sin -~-  sin - ~ )  + 0 ( l )  

where r 0 is the distance from the crack tip, which is small in comparison with the crack 
length ; (p is the angle of the radius vector (at the crack tip) to the crack continuation 

(line) 8 = ¢~, and Kn is the stress intensity factor. Parameter /fu , which is of con- 
siderable importance in fracture mechanics, remains to be determined in the course of 

solving the problem. In accordance with (3. Ii) we have 

4Ku (3.12) for 0=o¢ ,  r = t - - r o  ( r o - ~ | )  [zr] = - -  lY2__~o- 

K H 
for 0 = o c ,  r = l - - } - r o  ( r o < ~ l )  f r o =  try-E-to, o o = - O ( | )  

Reducing integrals (2. i0) to the standard form along the semi-infinite interval by using 

tlm new variable t = In r , then, applying a kind of Abel's theorem [3], from formulas 
(3.12) we obtain 

2 1/'~K n K n 
for p --> o¢ (1)- (p) = ]/'p ' ~F+ (P) = I/'- 2p (3.13) 

Consequently, on the basis of formulas (3.3), (3.6), (3.9) and (3.13) the analytic function 
in the right-hand part of equality (3. i0) tends to vanish in ]9_ when p --~ co. Thus 

by the LiouviUe's theorem the single analytic function is zero throughout the p-plane. 

The final solution of the problem can be written as 

4pF- (p) G- {p) (3.14) 
@- (P) = - -  K- (p) 

~F + (p) = _ F + (p) K + (p) G + (p) (3.15) 

From this we determine function D (iv) using (2.15) or (2.16) and obtain the Mellin 

transform for the unknown stresses. After inversion of the transformation we obtain the 
stresses themselves. 

4.  Analymtm of I o l u t t o n .  Let us determine the coefficient of stress intensity 
at the tip of the crack by using the known asymptotic behavior of (3, 13) and formulas 
(3.14),(3.3),(3.9) and(3.6) for p - ~ o o .  We obtain 

| I ]5 (t) dt 
KII = ]/'2" ~ti L - K+ (t) G+ (t) (4.1) 

It is possible to reduce this double integral to a single integral in the most frequently 
occurring case when the external load is defined by a polynomial or a rational-fractional 
function. To LUustrate this we present three examples. 
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C o n s t a n t 1 o a d. Let function f (r) be constant, f (r) = a ---- const .  (In the 
case of uniform compression at infinity, shown in Fig. 1, this constant is defined by for- 
mula ( 1. 9)) .  

Using formula 42.14) we obtain in this case 

F (p) = (a + k) / (p -4- 1) 44.2) 

Substituting this expression into formula (4. 1) and computing the integral by the theory 
of residues, we obtain }/2- (a + k) ]/'~" (a + k) 

- -  = 44.3) KIt  = K+ (--t)G+ (--i)  V'2- G+ (--i)  

Using formulas 43. 3) and 42. 20) we transform the integral G + ( - - i )  to a form conveni- 
ent for computation. First we note that the integral 

i ~.lnO(t)  dt 
2hi ~ t ~ - i  

taken over the small Semicircle of radius e near the coordinate origin is in conformity 
with expansion (3.1) of order e In e -{- O (e), i .e .  it tends to zero when e ~ 0. Hence 
in computing G + ( - - l )  it is possible to take the imaginary axis as the contour L The 
integral is then convergent (with a logarithmic singularity of the integrand at the coor- 
dinate origin). Next, we introduce along the contour L the real variable T (p = iT) 
and tramform the integral to the semi-infinite interval (0, t o o )  noting that along the 
imaginary axis Re  G is an even and I m  G an odd function of r. As the result we ob- 
tain t ~lnlGI-4-~argGdT 44.4 ) G + ( - -  i )  ---- exp ~ i + ~ 

where o 
In I G I ---- 1/~ in [(Re G) ~ % (Ira G) 2] (4.5) 

Im G 
arg G ~ arc tg  Re G 

I m  G = - -  2r  ~ tg p cos ~ a th  2aT c_h 
oh ~ T  

ch 2aT . .  
R e G  ---- I chh-~- [1 ~- 2v~ cos2 a - -  v t h 2 a T  (sin 2a  -4- 2tg  P cos2 a)] 

The expression G + ( - - t )  is a function that depends only on ¢t and p. Values of 
G + ( - - i )  X i0  a are presented in Table 1 for various p and a ;  these data were obtained 
by approximate integration of (4.4) by Siml~on's rule on a computer. To improve the 
convergence it is advisable, first, to eliminate the logarithmic singularity of the integrand 
at zero with the use of the following identity: 

1 

2 ( In T ~ ( 4. 6) 
n J i - b T  d ' [ =  6 

0 

L i n e a r  l o a d .  Let function ] (r) be linear, ] (7") -~ lqlr , where ~ h is some copm- 
tant coefficient. Such case occurs, for instance, when the own weight of a heavy massif, 
or the asymptotic bending are taken into consideration. 

In this case, using formula (2.14), we obtain 

k ,I, (4. 7) 
F (P) = -~-~-T "4- p + 2  
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Using (4.1) ,(3.3)  and (3.5) and restricting (4.7) to the second term, we obtain 
¢ Y  ~1 3 V ~  nl 

Ki t  = - -  K+ (--2) G+ (--2) = - -  8G+ (-- 2) (4. 8) 

where 
G + ( - -  2) = e x p ~  2 1 n [ G I q - ~ a r g G  4 + ~  - d r  (4.9) 

0 

and the remaining expressions are given in (4. 5). Values of G + ( - -2 )  X i 0  s computed 
for various p and o: by the same method as in the previous case, are presented in Table 2. 

Q u a d r a t i c  l o a d .  Let function [ (r) be quadratic, [ (r) : ~h r2, where lq 2 is 
some constant coefficient. In this case on the basis of (2.14) we have 

k ~12 
F(p)= p + i  + p + 3  (4.10) 

Using (4. 1), (3, 3) and (2.20) and restricting (4.10) to the second term we obtain 

V7  us 5~ V ~  
Ki t  = - -  K+ (--3) G+ (--3) = t6G+ (-- 3) (4. I I )  

where oc 

I I 3 1 n l G l + x a r g G  d r  (4.12) G + ( - -  3) = oxp --h-" 9 + T2 
0 

and the remaining expressions are given in (4. 5). Values of G + ( - -3 )  X tt3 a compu- 
ted for various p and cz by the same method as in previous cases, ate given in Table 3. 

S. S t a b i l i t y  of  a | l o p s  with a t e c t o n i c  crack.  The derived mathe- 
matical  solution can be applied in investigations of the slip line development in metals 
and in cracked rocks. According to the general functional method of fracture mechanics 

Fig. 3 

use this criterion for the theoretical solution of 
slope with a tectonic fissure. 

[1] the development of slip line (or fault 
fissure) can take place only then (*) 
when the absolute value of the stress con- 
centration factor Kr[ equals at the con- 
sidered point some constant K~I¢. The 
latter (the slip ductility) is completely 
determined by the structure and strength 
of the material at the "head" of the slip 
line. We recall the formula I~ ic  : 
2 E T ,  / (t  - -  v*), where y ,  is the irre- 
versible work of plastic deformation at 
the sLip line head expended on the for- 
marion of unit area of the slip surface. 
We stress that the work of irreversible 
deformations at the already existing slip 
surface is not included in V,.  We shall 
the geophysical problem of stability of a 

Let a heavy isotropie elastic massif occupy sector Yl ~ 0, x t tg  ~ q- Yl ~ 0 with 

*) Other, more complex criteria that take into account various temporal processes, the 
external medium, macroplastieity, e tc . ,  are possible [1]. 
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apex angle ~ (Fig. 3). The direction of the acceleration of gravity is opposite to that 
of the yl-axis. The slope contains a rectilinear tectonic crack which reaches the slope 
side face at depth H and angle cz, and is filled with low strength rock. The parameter 
KIre , which defines the inhomogeneity of the filler and its varying resistance to slip at 
the head of the slip line that develops along the tectonic discontinuity. The slip line 
length is denoted by l. The variation of filler strength may be caused, for example, by 
a difference in the moisture content owing to rain or ground water filtration. 

We shal.l solve the problem by the following method of successive approximations (of 
the kind of the Mikb.lin-Sherman method). In the first approximation the problem of 
slope wthout a crack is solved ; in this approximation all boundary conditions of the in- 
put problem are satisfied, except the condition for the force at the slip line x~t = k --  
o,~ t~ p. In the second approximation the problem is solved for the haLf-plane with a slit 
along the slip line (see boundary conditions (1.4) -- (1. 8)) with the "discrepanc/'in / (r) 
determined by the previous approximation. 

In the third approximation the problem of slope without crack loaded only at the 
ground day surface y, = 0 is solved with the load determined in the second approxima- 
tion,etc. The stress concentration factor K u is determined by the second, fourth, etc. 
approximations. Let us restrict the analysis to the second approximation, and assume that 
the length l is fairly small in comparison with H. The case of l N / / is  almost always 
close to the critical state, since then considerable tensile stresses appear in the day sur- 
face above the end of the slip line so that normal rapture occurs along the perpendicular 
to the day surface. 

First, let us determine the stress field in a homogeneous isotropic heavy slope without 
a tectonic crack, and assume that in addition to forces of gravity the massif is subjected 
to the following normal surface loads: 

for 01 = 0  o0 = - - q 0 - - 6 1 x l ,  %0 = 0 (5.1) 

for 01 = - -~  cr0 = - -q l  Jr- 80yl, "ere= 0 

where 80, 81, qo and ql are some positive constants, rl0,are polar coordinates whose 
origin lies at the vertex of the angle of slope (Fig. 3). The second boundary condition 
for 80 :~= 0 is important when the slope is a sea- or river-shore. 

Stresses Or, Oo and %o in the considered heavy massif can be represented with the 
use of the Kolosov-Muskhelishvili potentials (1) (z) and W (z) as follows [4]: 

8 (z --  z) 

F 6 (t --  2v). + 2~x,~ = ~'o, L2~a)' (z) + 2w" (z) + 2 , ( 1 - , 0  ~z- z)] C ; r - - ~  o 

(Z = ~¢1 -~- iYl : /'1 dot )  

where 8 is the specific gravity of rock. 
We seek a solution of the singular boundary value problem (5.1),(5.2) of the form 

CD (z) = E l z  q- Es q- Eo ln z, ~ F ( z )  = Esz -+- E4 + Es ln z (5.3) 

where Eo, . . . .  E 6 are some complex constants. (It can be readily shown that on 
group considerations this is the only possible form of solution [1]).  We add the first and 
second formulas in (5. 2) and obtain the representation for the combination oo -}- ixro 
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specified for 
the following equations: 

Eo + E3 -~- EO -+- E4 : - -  qo, 2E~ -+- E1 -~- E~ = - -  61 

6sinB [ t  -{- (t  - -  2v )e  -~ i ]  - -  6 o s i n ~  2Eie -~ -t-/~le~i -}- E~e-.~, ~i -~ 2 (t - -  v) 

Eo + Eo + E~ = O, Eo + Eo + Eae -~i  -~ 0 

~i (Eo - -  Eo) + Eo - -~iE~e ~i + Eo + E3 -~ E4e -2~i -~--- qx 

01 : 0 and O~ : - - ~ ;  by substituting (5 .3)  into the lat ter  we obtain 

(5 .4)  

We write the solution of this system of equations as 

i (qo - -  q0 sin 22 E5 = 0 (5 .5)  
E 0 ~  2 ( ~ s i n 2 ~ ' t + c o s 2 ~ )  ' 

E3 = q~ (t - -  cos 2,~) - -  qo (2~ sin 2~ - -  t + cos 2~) 
4 (!~ sin 2~ - -  t -4- cos 2~) 
(q0 + ql) (t - -  cos 2~) - -  2~qo sin 2~ -}- i (qo - -  ql) sin 2~ 

E4 -= - -  q0 - -  2 ([t sin 2~ - -  i -4- cos 2~) 

E t  - -  B (cos 2~ - -  i) + ~ (B - -  ~)  sin 2~ 
8 sin 4 

Es  = - -  61 - -  (2B + ' B )  (cos 2~ - -  i) + ~ (B + ~)  sin 2~ 
8 s i n  4 

6s in~  e~i[ i ~ ( l  - -  2v)e-2~q B = 60 s in  ~e~ t - -  61e -2~i 2 (i - -  ~) 

The case of local  loads applied near the slope angle are conveniently investigated by 
the method of Belonosov [5]. Using (5 .2)  we compute  in the derived solution (5 .3)  and 
(5 .5)  the normal  and shear stresses along the tectonic rupture for 

z = He -~i + r exp i (ct - ~ + ~ / 2 )  

where r is the distance from the crack base on the side mrface  of the *lope (Fig. 3). We 
have 

6 (z - -  ~) 
zn + i z t ,  = 2 Re  (Exz -4- Ea) + ~T~(t" Z.-~) -4- 2 R e  (Eo In  z) - -  (5 .6)  

[ z 8 ( t -  2 v ) ( z -  ~,) ] = 
e 2~<~'-~) Eo 7 -  + EI~ -4- E~z -4- E4 + 4~ (t -- ~) 

6H sin ~ [ 
2 R e  E~ -4- 2 H  B e  (Ele -t~) 2 (t - -  v) e~i(~-~) .E~  + 

E~He~ + E~He_~ _ 6H sin ~(t _--2v!] + r { - -  2 I m  [E~e t(~-~)] -1- 
2 Ci - -  ';) / 

6 cos (~ - -  ~) [ 6 (t - -  2v) cos (~ - -  ~) 
2 ( t  - -  v )  - -  e ~ t ( " - ~ ) .  2 ( t  - -  v )  - f -  E z t e i ( ~ - ~ )  - -  

g . - -  g00 p 

- -  H sin ~ + r cos (a - -  ~) 
arg z = arctg H cos ~ -- r sin (¢~ -- ~) (-- ~ ~ arg z < 0 

We compute  function f (r) by formulas (5.6)  
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/ (r) ---- - -  (xt= + zn tg  P) ----- i I m  [e ip (zn + i~tn)] 
cos p 

which determines the second approximation ~olution (see Sects. 3 and 4) and also, the 
s t re~ concentrat ion factor.  For convenience of computat ions we expand the last two non- 
l inear  terms in (5 .6)  in s e r i e s ln  r in the v ic in i ty  of point r ----- Z/2l . We restrict the 
expansion to the first two terms and then use the results of computat ions carried out in 
Sect, 4 for the case of the l inear  function ] (r).  

Final  formulas in d i m e m i o n l e ~  form are 

1 (r) = a + n~r 

K H  = - -  V'hT(a + k) _ 3n, V '2-~f / '  
~f2-G+ (-- I) 8G+ ( - -  2) 

where 

(5.7) 

{5.8) 

(5.9) l I m { e i ~ [ 2 B e E 3 + 2 H R e ( E z e - i a ) - -  
a =- cos---~ 

6H sin 
2 (t - -  v) e 2i(~-~) (E4 -4- E , H  ei~ -t- E~ He-~a - -  

6H sin ~ i - -  2v ( A  - -  2 / / i  cos ¢t 21m o )- 

l I m  e i° - -  9 I m  (Ere  ita-~)) + 2 (1 - -  ~) Ill  ~--- cos p 

e2i(a_~) ( l i~7 - -  2v 6 cos (a2 - -  ~) -[- gE*ei(a-r*) - -  iExe-i(a-~)) - -  

S .  CO~lmEo S ~ o " C O ~  ]} 
4H z - -  4//1 sin a + l" -4- 4H 2 _ 4Hl  sin a + l 2 e2i(a- '~-a)  

A =: a r c t g  - -  2H sin ~ + I cos (a - -  ~) 
ZH cos ~ - -  t sin Ca - -  ~) ( - -  ~ < h < 0) 

In the l imi t  state the quantity J Kt, l is equal  to the constant KI1 , .  Using this and (5, 8) 

we obtain the formula a -}- k 3~1,1 ]/"2 Kltc (5. 10) 
G- (-i) + 4G- (-- 2) V-~ 

which relates  the sl ip l ine length to the appl ied loads. If  K i t e  % ]/-~-I ] a -f- k 1, 
i . e .  the max imum admissible s t re~ concentrat ion is smal l  in comparison with the mean 
stress, then by virtue o f ( 5 . 1 0 )  we have 

4 (a + k) G+ (-- 2) 
3~l,G+ (-- i)  (5. Ii) 

This case can be of prac t ica l  impor tance  for very low strength fi l lem (e.  g. of the kind 
of  moist  c lay) .  It should be empha~zed  that  the problem that  obtains in this l im i t  case 
is the c l a ~ c a l  elasto-lalast ic  problem of the deve lopment  of  thin plast ic  f l ip  layers (for 
meta ls  p = 0 can be assumed in this c a ~ ) .  For an inhomogeneotm fi l ler  parameter  
KII~ in (5.10) is to be taken as some specified function of 1. 

Invest igat ion of  the f l ip  l ine motion s tabi l i ty  is carr ied out by methods of fracture 
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mechanics [I]. In the considered problems the necessary and sufficient condition of 
stability is of the form 0Kn / 01 ~ 0, i.e. by virtue of(5.8) and (5.10) 

a q- ~ - -  9*lzl (5.12) 
G~ (--  i) > 4G+ (-- 2) 

As an illustration of the derived solution we present below the dependence of the di- 
mensionless critical height of the slope Knc / (6HV~l) on the dimensionless para- 
meters k / 6 H a n d  I / H  for a load-free slope for v = 0,3,  q0 = q, = 0, 60 - -  

~1 = O, ~ = i 2 0  °, ~ = 75 ° and p : 30 ° 

KIIc ~ l 
6 ~  ~--------~ = 0.46 - -  0 .26 - -  0 .034  H 

The obtained solution can be,evidently,  used also for the experimental determination 

of  parameter Kuc  , for instance, in experiments on uniaxial compression of specimens 
with an artificial boundary discontinuity along an inclined bonding plane (formula(5.9) 
for 1 h = 0 and a is equal to the right-hand part of equality (1. 9)) .  The properties of 
the bond along the slip line and its continuation must simulate the properties of the fil- 
ler in the tectonic crack and its interaction with the basic rock (quantifies k and p of 
the adhesive must in any case be equal to the related minimum values of k and p that 
are characteristic for the pairs fiUer-fillez and fil let-rock in the l imit  and the sliding 
states). The practical difficulties of simulating the structure of the "head" slip line are, 
evidently, not smaller than in the case of crack of normal cleavage.  
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Elastic-plastic l~oblems for a plane weakened by an infinite series of circular 
holes are considered. It is assumed that the stress level and the spacing between 
the holes are such that the circular holes are entirely enclosed by the appropriate 


